High Fidelity Pol

Thermostable DNA polymerase for high accuracy

Thermus spezies, recombinant, E. coli

Cat. No.	Size	Conc.
HF_10KU	10 kU	2.5 units/µl
HF _100KU	100 kU	2.5 units/µl

For *in vitro* use only Quality guaranteed for 12 months Store at -20°C, avoid frequent thawing and freezing

Description

High Fidelity Pol is based on a blend of Taq DNA polymerase and a proofreading enzyme specially for highly accurate and designed efficient amplification. It shows excellent results with extremely long (up to 30 kb), GC-rich or other difficult templates. The enzyme blend includes a highly processive 5'→3' DNA polymerase and possesses a 5'→3' polymerization-dependent exonuclease replacement activity. Its inherent 3'→5' exonuclease proofreading activity results in a greatly increased fidelity of DNA synthesis compared to Taq polymerase.

The enzyme is highly purified and free of bacterial DNA.

Fidelity of the enzyme

High Fidelity Pol is characterized by a 4-fold higher fidelity compared to Taq polymerase.

ER_{High Fidelity Pol} = 3.4x10⁻⁶

The error rate (ER) of a PCR reaction is calculated using the equation ER = $MF/(bp \times d)$, where MF is the mutation frequency, bp is the number of base pairs of the fragment and d is the number of doublings (2^d = amount of product / amount of template).

Unit definition

One unit is defined as the amount of the enzyme required to catalyze the incorporation of 10 nmol of dNTP into an acid-insoluble form in 30 minutes at 74°C.

Recommended PCR assay

50 μl PCR assay					
5 μΙ	10x High fidelity buffer	green cap			
200 μΜ	each dNTP				
0.2-0.5 μΜ	forward Primer				
0.2-0.5 μΜ	reverse Primer				
1-100 ng	Template DNA				
0.5 µl (1.25 units)	High Fidelity Pol	red cap			
Fill up to 50 µl	PCR grade H₂O				

Please note that it is essential to add the polymerase as last component.

High Fidelity Pol (red cap)

2.5 units/µl High Fidelity Polymerase in storage buffer

10x High Fidelity Buffer (green cap)

Data sheet

High Fidelity Pol

Thermostable DNA polymerase for high accuracy

Thermus spezies, recombinant, E. coli

Recommended thermocycling conditions

Initial denaturation	95°C	2 min	1x
Denaturation	95°C	20 sec	
Annealing 1)	50-68°C	30 sec	20-30x
Elongation ^{2,3)}	72°C	1 min / kbp	
Final elongation	72°C	1 min / kbp	1x

- The annealing temperature depends on the melting temperature of the primers used.
- For amplification of fragments longer than 5 kb the elongation temperature should be set to 68°C.
- The elongation time depends on the length of the fragments to be amplified. A time of 1 min/kbp is recommended.

For optimal specificity and amplification an individual optimization of the recommended parameters may be necessary for each new primer-template pair.